Performance Tuning Series – Regular Maintenance

SQL Server performance isn’t just about the initial setup or database design—it requires continuous maintenance to ensure it runs smoothly over time. Neglecting regular maintenance can lead to fragmentation, slow queries, data integrity issues, and ultimately, downtime. By implementing a comprehensive maintenance strategy, you can ensure that your SQL Server databases remain optimized and healthy, allowing them to perform efficiently even as workloads and data volumes grow.

Why Regular Maintenance is Critical

Over time, SQL Server databases accumulate various inefficiencies that can degrade performance. These include fragmented indexes, outdated statistics, growing transaction logs, and unused or bloated data. Regular maintenance tasks help to mitigate these issues, ensuring that SQL Server can continue to execute queries quickly, handle transactions efficiently, and maintain data integrity.

Key Regular Maintenance Tasks for SQL Server

1. Index Rebuilding and Reorganization

Indexes can become fragmented over time as data is inserted, updated, or deleted. Fragmentation occurs when the logical order of pages in an index no longer matches the physical order on disk. This leads to slower reads, as SQL Server must perform additional I/O to retrieve scattered data.

  • Rebuild Indexes: Index rebuilds recreate the index from scratch, removing fragmentation and improving query performance. This process locks the table, so it should be scheduled during periods of low activity.
  • Reorganize Indexes: Reorganizing indexes is a less intrusive process that defragments them without locking the table. This can be done during regular operations but is less effective than a full rebuild.

Best Practice:

  • Schedule regular index maintenance based on the level of fragmentation. Use SQL Server’s sys.dm_db_index_physical_stats DMV to check fragmentation levels:
    • 0-10% fragmentation: No action needed.
    • 10-30% fragmentation: Use index reorganization.
    • Above 30% fragmentation: Perform a full index rebuild.
  • Automate index maintenance using SQL Server Agent jobs or a dedicated maintenance tool to ensure this task is performed regularly without manual intervention.

2. Update Statistics

SQL Server uses statistics to estimate the distribution of data values in a table, which helps the query optimizer choose the most efficient execution plan. As data is modified, these statistics can become outdated, leading to suboptimal query plans and slower performance.

  • Best Practice:
    • Regularly update statistics on your tables and indexes to ensure that the query optimizer has the most accurate information. Use the UPDATE STATISTICS command or enable SQL Server’s auto-update statistics feature.
    • For large tables, use sampled statistics to balance performance with accuracy. Full scans of very large tables can be resource-intensive.
    • If queries slow down unexpectedly, manually update statistics to resolve potential performance issues caused by outdated statistics.

3. Backup and Recovery Management

Regular backups are essential for data protection and business continuity. However, improper backup strategies can lead to bloated transaction logs, excessive disk usage, and even performance degradation during peak times.

  • Best Practice:
    • Implement a full backup strategy based on your business’s recovery point objectives (RPO) and recovery time objectives (RTO). Schedule full backups regularly (e.g., daily) and transaction log backups more frequently (e.g., every 15-30 minutes) for critical databases.
    • Use differential backups between full backups to reduce the load on storage and improve recovery times.
    • Regularly test your backups by restoring them to a separate environment to ensure that they can be successfully recovered when needed.
    • Ensure that backup schedules avoid peak activity times to prevent any impact on performance.

4. Transaction Log Management

SQL Server’s transaction log records every modification made to the database. If not properly managed, the transaction log can grow excessively large, consuming valuable disk space and degrading performance.

  • Best Practice:
    • Use the Full Recovery Model for critical databases to ensure point-in-time recovery, but regularly back up the transaction logs to prevent them from growing too large.
    • For less critical databases or databases that don’t require point-in-time recovery, consider using the Simple Recovery Model, which automatically truncates the transaction log after each checkpoint.
    • Monitor transaction log size and schedule log backups frequently to avoid excessive growth. Use the sys.dm_db_log_space_usage DMV to monitor log space consumption.

5. Integrity Checks (DBCC CHECKDB)

Database corruption can occur for various reasons, such as hardware failures or improper shutdowns. SQL Server provides the DBCC CHECKDB command to detect and repair corruption in your databases.

  • Best Practice:
    • Run DBCC CHECKDB regularly to ensure data integrity. This process checks for physical and logical corruption in database files.
    • Schedule DBCC CHECKDB during off-peak hours to avoid performance impacts, as this operation can be resource-intensive.
    • If DBCC CHECKDB identifies corruption, address the issue immediately. Use repair options like REPAIR_ALLOW_DATA_LOSS as a last resort, and restore from backups when possible.

6. Tempdb Maintenance

Tempdb is a shared system database that is heavily used by SQL Server for temporary objects, intermediate query results, and sorting. Over time, tempdb can become a performance bottleneck if it is not properly managed.

  • Best Practice:
    • Ensure that tempdb has multiple data files, especially in high-concurrency environments. Best practice is to configure one data file per logical CPU core (up to 8 cores), which helps reduce contention on system pages (like PFS, GAM, and SGAM).
    • Place tempdb on fast storage (preferably SSD or NVMe) to handle its high I/O workload.
    • Regularly monitor tempdb space usage to avoid running out of space, which can lead to system crashes. Use sys.dm_db_task_space_usage and sys.dm_db_session_space_usage to track space consumption.

7. Cleanup of Unused or Outdated Data

Over time, databases may accumulate unused data, which can increase table sizes and slow down queries. Regularly cleaning up obsolete data ensures your database remains efficient.

  • Best Practice:
    • Implement a data retention policy that defines how long data should be kept before being archived or deleted. This policy should reflect business requirements while keeping database sizes manageable.
    • Periodically archive old data that is not frequently accessed into separate databases or storage systems.
    • Use automated scripts to clean up old or unused records, freeing up space and reducing index bloat.

8. Monitor and Tune Performance

SQL Server provides several tools for monitoring performance, including Dynamic Management Views (DMVs) and Extended Events. Regular monitoring can help identify performance bottlenecks before they affect end-users.

  • Best Practice:
    • Regularly monitor key performance metrics like CPU usage, memory usage, disk I/O, and query execution times to ensure the system is operating within optimal thresholds.
    • Use SQL Server Profiler or Extended Events to capture detailed information about query performance and diagnose slow-running queries.
    • Leverage DMV’s to analyze query patterns and suggest optimizations like new indexes.
    • Continuously review and tune your queries, indexes, and database schema based on real-time performance data.

9. Automating Maintenance Tasks

Manually managing routine maintenance tasks can be time-consuming and prone to error. SQL Server provides built-in automation tools, such as SQL Server Agent, to schedule and manage maintenance operations.

  • Best Practice:
    • Set up automated maintenance jobs for tasks like index rebuilding, statistics updates, transaction log backups, and integrity checks. This ensures that these critical operations are performed consistently and without manual intervention.
    • Regularly review and adjust job schedules to avoid conflicts during peak business hours.
    • Use maintenance plans in SQL Server Management Studio (SSMS) or third-party tools for more advanced scheduling and management of maintenance tasks.

Conclusion

Regular maintenance is essential for keeping your SQL Server database healthy and optimized for performance. Tasks like index rebuilding, updating statistics, managing transaction logs, performing integrity checks, and cleaning up obsolete data all contribute to the overall efficiency and reliability of your SQL Server environment. By automating maintenance operations, monitoring key performance metrics, and regularly tuning the system, you can ensure that your SQL Server databases continue to deliver optimal performance as your workload and data volumes grow.

SQL Server Maintenance Plans Reporting and Logging

This post will focus on the reporting and logging option of maintenance plans.

When a maintenance plan executes it’s nice to know the results especially in case of a failure. You can view the results in a few different ways that include the following:

  • Maintenance Plan history
  • SQL Server Agent Job history
  • SQL Server Error Log
  • sp_readerrorlog
  • Maintenance Plan Reporting and Logging

Maintenance Plan Reporting and Logging Options

The Maintenance Plan reporting and logging option is enabled by default, but a lot of DBA’s and developers don’t even realize it is an option, much less that it’s enabled.

To configure this option, open a maintenance plan and on the top bar beside Manage Connections…. you’ll notice a little chart/paper icon. It’s not hidden, but it doesn’t jump out at you and that’s probably why a lot of DBA’s don’t pay any attention.

SQL Freelancer SQL Server Maintenance Plan Reporting and Logging

If you click the icon you’ll notice there are a few options to choose from:

SQL Freelancer SQL Server Maintenance Plan Reporting and Logging

Let’s go over each one of these:

Generate a text file report

This option allows you to enable or disable the text file report.

Create a new file

This option allows you to create a new report file each time a maintenance plan is executed. Create a new file is the default option and the default folder location is the folder you specified SQL Server to use for the LOG folder. You can specify a different location if preferred.

Here is a screenshot of Windows Explorer where a new file is created each execution:

SQL Freelancer SQL Server Maintenance Plan Reporting and Logging

You may notice that if you run a maintenance plan throughout the day that it could quickly fill up your drive with these 1kb files. Luckily, we don’t have to go in and check our file system and delete these files manually. SQL Server has a task that will automate this for us (see below).

While we are at this point, go ahead and check one of your servers. Check the location of a maintenance plan text file and then check the folder on the server. Or maybe you’ve noticed these files while browsing through your LOG folder and wasn’t sure where they came from.

Append to file

This option allows you to create one text file and append the results to that file. This will reduce the number of files, but will increase the size of the file and it makes it more difficult to read in my opinion.

Click here to view the rest of this post.